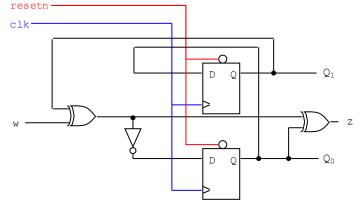

Solutions - Quiz 4

(April 5th @ 5:30 pm)

PROBLEM 1 (35 PTS)

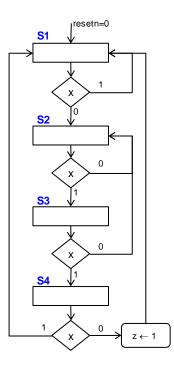
Draw the state diagram (in ASM form) of the FSM whose VHDL description is listed below:


PROBLEM 2 (35 PTS)

Given the following FSM circuit:

✓ Provide the Excitation Table and the Excitation equations (including the Boolean equation for z).

 $Q_1(t+1) \leftarrow Q_0(t)$ $Q_0(t+1) \leftarrow \overline{Q_1(t) \oplus w}$ $z = Q_1(t) \oplus Q_0(t) \oplus w$


PRESENT STATE			NEXTSTATE		
W	Q ₁ Q	2 ₀ (t)	Q ₁	Q ₀ (t+1)	Z
0	0	0	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	1	0
1	1	1	1	1	1

Is this a Mealy or a Moore FSM? Why? (5 pts)
The output *z* depends on input *w* as well as on the present state. Thus, it is a Mealy FSM.

PROBLEM 3 (30 PTS)

• Sequence detector: Draw the state diagram (any representation) of an FSM with input x and output z. The detector asserts z = 1 when the sequence 0110 is detected. Right after the sequence is detected, the circuit looks for a new sequence.

